modelling and investigation of wetting properties of textile materials

modelling and investigation of wetting properties of textile materials покупай по лучшей цене продажа только через проверенные магазины


Michael Cartwright Laser Ignition of Energetic Materials Michael Cartwright Laser Ignition of Energetic Materials
:

Michael Cartwright Laser Ignition of Energetic Materials


ПОДРОБНЕЕ...

13844.19 руб.

The book gives an introduction to energetic materials and lasers, properties of such materials and the current methods for initiating energetic materials. The following chapters and sections highlight the properties of lasers, and safety aspects of their application. It covers the properties of in-service energetic materials, and also materials with prospects of being used as insensitive ammunitions in future weapon or missiles systems or as detonators in civilian (mining) applications. Because of the diversity of the topics some sections will naturally separate into different levels of expertise and knowledge.

Kalin Mitjan Tribology of Ceramics and Composites. Materials Science Perspective Kalin Mitjan Tribology of Ceramics and Composites. Materials Science Perspective
:

Kalin Mitjan Tribology of Ceramics and Composites. Materials Science Perspective


ПОДРОБНЕЕ...

14043.29 руб.

This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.

Jean-Pierre Ollivier Physical Properties of Concrete and Concrete Constituents Jean-Pierre Ollivier Physical Properties of Concrete and Concrete Constituents
:

Jean-Pierre Ollivier Physical Properties of Concrete and Concrete Constituents


ПОДРОБНЕЕ...

11960.57 руб.

Understanding the rheological properties of fresh concrete, the hydration phenomenon of cement responsible for structuration, the relationship between the characteristics of the porous solid obtained and its mechanical performances or resistance to the aggressive penetration requires a complex knowledge of the physicochemistry of reactive porous materials. The development of simple formulation rules therefore requires the assimilation of this knowledge and a good command of the properties of these materials. The purpose of this book is to provide the mix designer with useful knowledge on granular materials and porous materials, which will enable the innovative design of concrete. Topics covered include the characterization of granular materials, the concepts of porosity and specific surface area, and the transport properties (diffusion and permeation) of concrete. Some of these topics are already covered in other general books dedicated to granular or porous materials. The objective here is to bring them together in one book by adapting them for use by concrete specialists. Applications in the form of exercises are offered at the end of each chapter to enable readers to assimilate the theoretical knowledge and to apply such knowledge to concrete problems encountered in civil engineering. Contents 1. Description of Granular Materials, Definitions. 2. Granulometry. 3. Specific Surface Area of Materials. 4. Voids in Granular Materials and the Arrangement of Grains. 5. Voids in Concrete. 6. The Fundamentals of Diffusion. 7. Permeability.

Jacques Lamon Processing and Properties of Advanced Ceramics and Composites IV Jacques Lamon Processing and Properties of Advanced Ceramics and Composites IV
:

Jacques Lamon Processing and Properties of Advanced Ceramics and Composites IV


ПОДРОБНЕЕ...

10075.57 руб.

With contributed papers from the 2011 Materials Science and Technology symposia, this is a useful one-stop resource for understanding the most important issues in the processing and properties of advanced ceramics and composites. Logically organized and carefully selected, the articles cover the themes of the symposia: Innovative Processing and Synthesis of Ceramics, Glasses and Composites; Advances in Ceramic Matrix Composites; Solution-Based Processing of Materials; and Microwave Processing of Materials. A must for academics in mechanical and chemical engineering, materials and or ceramics, and chemistry.

Norman Allen S. Photochemistry and Photophysics of Polymeric Materials Norman Allen S. Photochemistry and Photophysics of Polymeric Materials
:

Norman Allen S. Photochemistry and Photophysics of Polymeric Materials


ПОДРОБНЕЕ...

13580.33 руб.

Presents the state of the technology, from fundamentals to new materials and applications Today's electronic devices, computers, solar cells, printing, imaging, copying, and recording technology, to name a few, all owe a debt to our growing understanding of the photophysics and photochemistry of polymeric materials. This book draws together, analyzes, and presents our current understanding of polymer photochemistry and photophysics. In addition to exploring materials, mechanisms, processes, and properties, the handbook also highlights the latest applications in the field and points to new developments on the horizon. Photochemistry and Photophysics of Polymer Materials is divided into seventeen chapters, including: Optical and luminescent properties and applications of metal complex-based polymers Photoinitiators for free radical polymerization reactions Photovoltaic polymer materials Photoimaging and lithographic processes in polymers Photostabilization of polymer materials Photodegradation processes in polymeric materials Each chapter, written by one or more leading experts and pioneers in the field, incorporates all the latest findings and developments as well as the authors' own personal insights and perspectives. References guide readers to the literature for further investigation of individual topics. Together, the contributions represent a series of major developments in the polymer world in which light and its energy have been put to valuable use. Not only does this reference capture our current state of knowledge, but it also provides the foundation for new research and the development of new materials and new applications.

Ashutosh Tiwari Advanced Engineering Materials and Modeling Ashutosh Tiwari Advanced Engineering Materials and Modeling
:

Ashutosh Tiwari Advanced Engineering Materials and Modeling


ПОДРОБНЕЕ...

16309.61 руб.

The engineering of materials with advanced features is driving the research towards the design of innovative materials with high performances. New materials often deliver the best solution for structural applications, precisely contributing towards the finest combination of mechanical properties and low weight. The mimicking of nature's principles lead to a new class of structural materials including biomimetic composites, natural hierarchical materials and smart materials. Meanwhile, computational modeling approaches are the valuable tools complementary to experimental techniques and provide significant information at the microscopic level and explain the properties of materials and their very existence. The modeling also provides useful insights to possible strategies to design and fabricate materials with novel and improved properties. The book brings together these two fascinating areas and offers a comprehensive view of cutting-edge research on materials interfaces and technologies the engineering materials. The topics covered in this book are divided into 2 parts: Engineering of Materials, Characterizations & Applications and Computational Modeling of Materials. The chapters include the following: Mechanical and resistance behavior of structural glass beams Nanocrystalline metal carbides – microstructure characterization SMA-reinforced laminated glass panel Sustainable sugarcane bagasse cellulose for papermaking Electrospun scaffolds for cardiac tissue engineering Bio-inspired composites Density functional theory for studying extended systems First principles based approaches for modeling materials Computer aided materials design Computational materials for stochastic electromagnets Computational methods for thermal analysis of heterogeneous materials Modelling of resistive bilayer structures Modeling tunneling of superluminal photons through Brain Microtubules Computer aided surgical workflow modeling Displaced multiwavelets and splitting algorithms

Andreas Ochsner Cellular and Porous Materials. Thermal Properties Simulation and Prediction Andreas Ochsner Cellular and Porous Materials. Thermal Properties Simulation and Prediction
:

Andreas Ochsner Cellular and Porous Materials. Thermal Properties Simulation and Prediction


ПОДРОБНЕЕ...

20875.29 руб.

Providing the reader with a solid understanding of the fundamentals as well as an awareness of recent advances in properties and applications of cellular and porous materials, this handbook and ready reference covers all important analytical and numerical methods for characterizing and predicting thermal properties. In so doing it directly addresses the special characteristics of foam-like and hole-riddled materials, combining theoretical and experimental aspects for characterization purposes.

Malcolm Halcrow A. Spin-Crossover Materials. Properties and Applications Malcolm Halcrow A. Spin-Crossover Materials. Properties and Applications
:

Malcolm Halcrow A. Spin-Crossover Materials. Properties and Applications


ПОДРОБНЕЕ...

14642.61 руб.

The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applications presents a comprehensivesurvey of recent developments in spin-crossover research, highlighting the multidisciplinary nature of this rapidly expanding field. Following an introductory chapter which describes the spin-crossover phenomenon and historical development of the field, the book goes on to cover a wide range of topics including Spin-crossover in mononuclear, polynuclear and polymeric complexes Structure: function relationships in molecular spin-crossover materials Charge-transfer-induced spin-transitions Reversible spin-pairing in crystalline organic radicals Spin-state switching in solution Spin-crossover compounds in multifunctional switchable materials and nanotechnology Physical and theoretical methods for studying spin-crossover materials Spin-Crossover Materials: Properties and Applications is a valuable resource for academic researchers working in the field of spin-crossover materials and topics related to crystal engineering, solid state chemistry and physics, and molecular materials. Postgraduate students will also find this book useful as a comprehensive introduction to the field.

Malcolm Halcrow A. Spin-Crossover Materials. Properties and Applications Malcolm Halcrow A. Spin-Crossover Materials. Properties and Applications
:

Malcolm Halcrow A. Spin-Crossover Materials. Properties and Applications


ПОДРОБНЕЕ...

15586.51 руб.

The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applications presents a comprehensivesurvey of recent developments in spin-crossover research, highlighting the multidisciplinary nature of this rapidly expanding field. Following an introductory chapter which describes the spin-crossover phenomenon and historical development of the field, the book goes on to cover a wide range of topics including Spin-crossover in mononuclear, polynuclear and polymeric complexes Structure: function relationships in molecular spin-crossover materials Charge-transfer-induced spin-transitions Reversible spin-pairing in crystalline organic radicals Spin-state switching in solution Spin-crossover compounds in multifunctional switchable materials and nanotechnology Physical and theoretical methods for studying spin-crossover materials Spin-Crossover Materials: Properties and Applications is a valuable resource for academic researchers working in the field of spin-crossover materials and topics related to crystal engineering, solid state chemistry and physics, and molecular materials. Postgraduate students will also find this book useful as a comprehensive introduction to the field.

Dermot O'Hare Molecular Materials Dermot O'Hare Molecular Materials
:

Dermot O'Hare Molecular Materials


ПОДРОБНЕЕ...

10075.57 руб.

“… the book does an excellent job of putting together several different classes of materials. Many common points emerge, and the book may facilitate the development of hybrids in which the qualities of the “parents” are enhanced.” –Angew. Chem. Int. Ed. 2011 With applications in optoelectronics and photonics, quantum information processing, nanotechnology and data storage, molecular materials enrich our daily lives in countless ways. These materials have properties that depend on their exact structure, the degree of order in the way the molecules are aligned and their crystalline nature. Small, delicate changes in molecular structure can totally alter the properties of the material in bulk. There has been increasing emphasis on functional metal complexes that demonstrate a wide range of physical phenomena. Molecular Materials represents the diversity of the area, encapsulating magnetic, optical and electrical properties, with chapters on: Metal-Based Quadratic Nonlinear Optical Materials Physical Properties of Metallomesogens Molecular Magnetic Materials Molecular Inorganic Conductors and Superconductors Molecular Nanomagnets Structured to include a clear introduction, a discussion of the basic concepts and up-to-date coverage of key aspects, each chapter provides a detailed review which conveys the excitement of work in that field. Additional volumes in the Inorganic Materials Series: Low-Dimensional Solids | Molecular Materials | Porous Materials | Energy Materials

Ashutosh Tiwari Advanced Sensor and Detection Materials Ashutosh Tiwari Advanced Sensor and Detection Materials
:

Ashutosh Tiwari Advanced Sensor and Detection Materials


ПОДРОБНЕЕ...

14565.59 руб.

Presents a comprehensive and interdisciplinary review of the major cutting-edge technology research areas—especially those on new materials and methods as well as advanced structures and properties—for various sensor and detection devices The development of sensors and detectors at macroscopic or nanometric scale is the driving force stimulating research in sensing materials and technology for accurate detection in solid, liquid, or gas phases; contact or non-contact configurations; or multiple sensing. The emphasis on reduced-scale detection techniques requires the use of new materials and methods. These techniques offer appealing perspectives given by spin crossover organic, inorganic, and composite materials that could be unique for sensor fabrication. The influence of the length, composition, and conformation structure of materials on their properties, and the possibility of adjusting sensing properties by doping or adding the side-groups, are indicative of the starting point of multifarious sensing. The role of intermolecular interactions, polymer and ordered phase formation, as well as behavior under pressure and magnetic and electric fields are also important facts for processing ultra-sensing materials. The 15 chapters written by senior researchers in Advanced Sensor and Detection Materials cover all these subjects and key features under three foci: 1) principals and perspectives, 2) new materials and methods, and 3) advanced structures and properties for various sensor devices.

David Cleary A. Principles of Inorganic Materials Design David Cleary A. Principles of Inorganic Materials Design
:

David Cleary A. Principles of Inorganic Materials Design


ПОДРОБНЕЕ...

13192.25 руб.

Unique interdisciplinary approach enables readers to overcome complex design challenges Integrating concepts from chemistry, physics, materials science, metallurgy, and ceramics, Principles of Inorganic Materials Design, Second Edition offers a unique interdisciplinary approach that enables readers to grasp the complexities of inorganic materials. The book provides a solid foundation in the principles underlying the design of inorganic materials and then offers the guidance and tools needed to create specific materials with desired macroscopic properties. Principles of Inorganic Materials Design, Second Edition begins with an introduction to structure at the microscopic level and then progresses to smaller-length scales. Next, the authors explore both phenomenological and atomistic-level descriptions of transport properties, the metal?nonmetal transition, magnetic and dielectric properties, optical properties, and mechanical properties. Lastly, the book covers phase equilibria, synthesis, and nanomaterials. Special features include: Introduction to the CALPHAD method, an important, but often overlooked topic More worked examples and new end-of-chapter problems to help ensure mastery of the concepts Extensive references to the literature for more in-depth coverage of particular topics Biographies introducing twentieth-century pioneers in the field of inorganic materials science This Second Edition has been thoroughly revised and updated, incorporating the latest findings and featuring expanded discussions of such key topics as microstructural aspects, density functional theory, dielectric properties, mechanical properties, and nanomaterials. Armed with this text, students and researchers in inorganic and physical chemistry, physics, materials science, and engineering will be equipped to overcome today's complex design challenges. This textbook is recommended for senior-level undergraduate and graduate course work.

Ulrich Prahl Handbook of Software Solutions for ICME Ulrich Prahl Handbook of Software Solutions for ICME
:

Ulrich Prahl Handbook of Software Solutions for ICME


ПОДРОБНЕЕ...

13772.67 руб.

As one of the results of an ambitious project, this handbook provides a well-structured directory of globally available software tools in the area of Integrated Computational Materials Engineering (ICME). The compilation covers models, software tools, and numerical methods allowing describing electronic, atomistic, and mesoscopic phenomena, which in their combination determine the microstructure and the properties of materials. It reaches out to simulations of component manufacture comprising primary shaping, forming, joining, coating, heat treatment, and machining processes. Models and tools addressing the in-service behavior like fatigue, corrosion, and eventually recycling complete the compilation. An introductory overview is provided for each of these different modelling areas highlighting the relevant phenomena and also discussing the current state for the different simulation approaches. A must-have for researchers, application engineers, and simulation software providers seeking a holistic overview about the current state of the art in a huge variety of modelling topics. This handbook equally serves as a reference manual for academic and commercial software developers and providers, for industrial users of simulation software, and for decision makers seeking to optimize their production by simulations. In view of its sound introductions into the different fields of materials physics, materials chemistry, materials engineering and materials processing it also serves as a tutorial for students in the emerging discipline of ICME, which requires a broad view on things and at least a basic education in adjacent fields.

Rick Ubic Microwave Materials and Applications Rick Ubic Microwave Materials and Applications
:

Rick Ubic Microwave Materials and Applications


ПОДРОБНЕЕ...

25369.44 руб.

The recent rapid progress in wireless telecommunication, including the Internet of Things, 5th generation wireless systems, satellite broadcasting, and intelligent transport systems has increased the need for low-loss dielectric materials and modern fabrication techniques. These materials have excellent electrical, dielectric, and thermal properties and have enormous potential, especially in wireless communication, flexible electronics, and printed electronics. Microwave Materials and Applications discusses the methods commonly employed for measuring microwave dielectric properties, the various attempts reported to solve problems of materials chemistry and crystal structure, doping, substitution, and composite formation, highlighting the processing techniques, morphology influences, and applications of microwave materials whilst summarizing many of the recent technical research accomplishments in the area of microwave dielectrics and applications Chapters examine: Oxide ceramics for dielectric resonators and substrates HTCC, LTCC and ULTCC tapes for substrates Polymer ceramic composites for printed circuit boards Elastomer-ceramic composites for flexible electronics Dielectric inks EMI shielding materials Microwave ferrites A comprehensive Appendix presents the fundamental properties for more than 4000 low-loss dielectric ceramics, their composition, crystal structure, and their microwave dielectric properties. Microwave Materials and Applications presents a comprehensive view of all aspects of microwave materials and applications, making it useful for scientists, industrialists, engineers, and students working on current and emerging applications of wireless communications and consumer electronics.

Oliver Eibl Thermoelectric Bi2Te3 Nanomaterials Oliver Eibl Thermoelectric Bi2Te3 Nanomaterials
:

Oliver Eibl Thermoelectric Bi2Te3 Nanomaterials


ПОДРОБНЕЕ...

12684.72 руб.

Edited by the initiators of a priority research program funded by the German Science Foundation and written by an international team of key players, this is the first book to provide an overview of nanostructured thermoelectric materials – putting the new developments into perspective alongside conventional thermoelectrics. As such, it reviews the current state of research on thermoelectric Bi2Te3 nanomaterials, covering advanced methods of materials synthesis, characterization of materials structures and thermoelectric properties, as well as advances in the theory and modeling of transport properties. Nanomaterials-based thermoelectric devices are also discussed with respect to their properties, their suitability for different energy generation applications, and in light of their commercialization potential. An outlook on the chances, challenges and future directions of research rounds off the book, giving a straightforward account of the fundamental and technical problems – plus ways to overcome them.

Witold Brostow Materials. Introduction and Applications Witold Brostow Materials. Introduction and Applications
:

Witold Brostow Materials. Introduction and Applications


ПОДРОБНЕЕ...

9060.51 руб.

Presents a fully interdisciplinary approach with a stronger emphasis on polymers and composites than traditional materials books Materials science and engineering is an interdisciplinary field involving the properties of matter and its applications to various areas of science and engineering. Polymer materials are often mixed with inorganic materials to enhance their mechanical, electrical, thermal, and physical properties. Materials: Introduction and Applications addresses a gap in the existing textbooks on materials science. This book focuses on three Units. The first, Foundations, includes basic materials topics from Intermolecular Forces and Thermodynamics and Phase Diagrams to Crystalline and Non-Crystalline Structures. The second Units, Materials, goes into the details of many materials including Metals, Ceramics, Organic Raw Materials, Polymers, Composites, Biomaterials, and Liquid Crystals and Smart Materials. The third and final unit details Behavior and Properties including Rheological, Mechanical, Thermophysical, Color and Optical, Electrical and Dielectric, Magnetic, Surface Behavior and Tribology, Materials, Environment and Sustainability, and Testing of Materials. Materials: Introduction and Applications features: Basic and advanced Materials concepts Interdisciplinary information that is otherwise scattered consolidated into one work Links to everyday life application like electronics, airplanes, and dental materials Certain topics to be discussed in this textbook are more advanced. These will be presented in shaded gray boxes providing a two-level approach. Depending on whether you are a student of Mechanical Engineering, Electrical Engineering, Engineering Technology, MSE, Chemistry, Physics, etc., you can decide for yourself whether a topic presented on a more advanced level is not important for you—or else essential for you given your professional profile Witold Brostow is Regents Professor of Materials Science and Engineering at the University of North Texas. He is President of the International Council on Materials Education and President of the Scientific Committee of the POLYCHAR World Forum on Advanced Material (42 member countries). He has three honorary doctorates and is a Member of the European Academy of Sciences, Member of the National Academy of Sciences of Mexico, Foreign Member of the National Academy of Engineering of Georgia in Tbilisi and Fellow of the Royal Society of Chemistry in London. His publications have been cited more than 7200 times. Haley Hagg Lobland is the Associate Director of LAPOM at the University of North Texas. She is a Member of the POLYCHAR Scientific Committeee. She has received awards for her research presented at conferences in: Buzios, Rio de Janeiro, Brazil; NIST, Frederick, Maryland; Rouen, France; and Lviv, Ukraine. She has lectured in a number of countries including Poland and Spain. Her publications include joint ones with colleagues in Egypt, Georgia, Germany, India, Israel, Mexico, Poland, Turkey and United Kingdom.

Ashutosh Tiwari Advanced Functional Materials Ashutosh Tiwari Advanced Functional Materials
:

Ashutosh Tiwari Advanced Functional Materials


ПОДРОБНЕЕ...

14135.09 руб.

Because of their unique properties (size, shape, and surface functions), functional materials are gaining significant attention in the areas of energy conversion and storage, sensing, electronics, photonics, and biomedicine. Within the chapters of this book written by well-known researchers, one will find the range of methods that have been developed for preparation and functionalization of organic, inorganic and hybrid structures which are the necessary building blocks for the architecture of various advanced functional materials. The book discusses these innovative methodologies and research strategies, as well as provides a comprehensive and detailed overview of the cutting-edge research on the processing, properties and technology developments of advanced functional materials and their applications. Specifically, Advanced Functional Materials: Compiles the objectives related to functional materials and provides detailed reviews of fundamentals, novel production methods, and frontiers of functional materials, including metalic oxides, conducting polymers, carbon nanotubes, discotic liquid crystalline dimers, calixarenes, crown ethers, chitosan and graphene. Discusses the production and characterization of these materials, while mentioning recent approaches developed as well as their uses and applications for sensitive chemiresistors, optical and electronic materials, solar hydrogen generation, supercapacitors, display and organic light-emitting diodes, functional adsorbents, and antimicrobial and biocompatible layer formation. This volume in the Advanced Materials Book Series includes twelve chapters divided into two main areas: Part 1: Functional Metal Oxides: Architecture, Design and Applications and Part 2: Multifunctional Hybrid Materials: Fundamentals and Frontiers

K. Mittal L. Advances in Contact Angle, Wettability and Adhesion, Volume Two K. Mittal L. Advances in Contact Angle, Wettability and Adhesion, Volume Two
:

K. Mittal L. Advances in Contact Angle, Wettability and Adhesion, Volume Two


ПОДРОБНЕЕ...

15947.19 руб.

This book is the second volume in the series «Contact Angle, Wettability and Adhesion.» The premier volume was published in 2013. Even a cursory glance at the literature show that in recent years the interest in understanding and controlling wetting behavior has grown exponentially. Currently, there is tremendous research activity in rendering surfaces superhydrophobic, superhydrophilic, superoleophobic, superoleophilic, omniphobic and omniphilic because of their applications in many technologically important fields. Also the durability or robustness of materials with such super" characteristics is extremely significant, as well as the utilization of «green» (biobased) materials to obtain such surfaces. This book containing 19 articles reflects more recent developments in certain areas covered in its predecessor volume as well as it includes some topics which were not covered before. Concomitantly, this book provides a medium to keep abreast of the latest research activity and developments in the arena of contact angle, wettability and adhesion. The topics discussed include: Understanding of wetting hysteresis; fabrication of superhydrophobic materials; plasma treatment to achieve superhydrophilic surfaces; highly liquid repellent textiles; modification of paper surfaces to control liquid wetting and adhesion; Cheerios effect and its control; engineering materials with superwettability; laser ablation to create micro/nano-patterned surfaces; liquid repellent amorphous carbon nanoparticle networks; mechanical durability of liquid repellent surfaces; wetting of solid walls and spontaneous capillary flow; relationship between roughness and oleophilicity; superhydrophobic and superoleophobic green materials; computational analysis of wetting on hydrophobic surfaces: application to self-cleaning mechanisms; bubble adhesion to superhydrophilic surfaces; surface free energy of superhydrophobic materials; and role of surface free energy in pharmaceutical tablet tensile strength.

Rainer Wesche Physical Properties of High-Temperature Superconductors Rainer Wesche Physical Properties of High-Temperature Superconductors
:

Rainer Wesche Physical Properties of High-Temperature Superconductors


ПОДРОБНЕЕ...

11995.62 руб.

A much-needed update on complex high-temperature superconductors, focusing on materials aspects; this timely book coincides with a recent major break-through of the discovery of iron-based superconductors. It provides an overview of materials aspects of high-temperature superconductors, combining introductory aspects, description of new physics, material aspects, and a description of the material properties This title is suitable for researchers in materials science, physics and engineering. Also for technicians interested in the applications of superconductors, e.g. as biomagnets

Michael Jenkins Processing, Properties, and Design of Advanced Ceramics and Composites II Michael Jenkins Processing, Properties, and Design of Advanced Ceramics and Composites II
:

Michael Jenkins Processing, Properties, and Design of Advanced Ceramics and Composites II


ПОДРОБНЕЕ...

16309.61 руб.

Processing, Properties, and Design of Advanced Ceramics and Composites II, Ceramic Transactions Volume 261 Narottam P. Bansal, Ricardo H. R. Castro, Michael Jenkins, Amit Bandyopadhyay, Susmita Bose, Amar Bhalla, J.P. Singh, Morsi M. Mahmoud, Gary Pickrell, and Sylvia Johnson; Editors This proceedings volume contains a collection of 36 papers (~350 pages) from the following symposia held during the 2016 Materials Science and Technology (MS&T’16) meeting held in Salt Lake City, UT, October 24-27, 2016: Advanced Materials for Harsh Environments Advances in Dielectric Materials and Electronic Devices Advances in Ceramic Matrix Composites Ceramic Optical Materials Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials Innovative Processing and Synthesis of Ceramics, Glasses and Composites International Standards for Properties and Performance of Advanced Ceramics Multifunctional Oxides Rustum Roy Memorial Symposium on Processing and Performance of Materials Using Microwaves, Electric, and Magnetic Fields Sintering and Related Powder Processing Science and Technology Surface Properties of Biomaterials Thermal Protection Materials and Systems Zirconia Based Materials for Cutting Edge Technology

Tiwari Ashutosh Responsive Materials and Methods. State-of-the-Art Stimuli-Responsive Materials and Their Applications Tiwari Ashutosh Responsive Materials and Methods. State-of-the-Art Stimuli-Responsive Materials and Their Applications
:

Tiwari Ashutosh Responsive Materials and Methods. State-of-the-Art Stimuli-Responsive Materials and Their Applications


ПОДРОБНЕЕ...

18441.47 руб.

The development of finely-tuned materials that adjust in a predictable manner by specific environment change is the recent arena of materials research. It is a newly emerging supra-disciplinary field with huge commercial potential. Stimuli-responsive materials answer by a considerable change in their properties to small changes in their environment. Responsive materials are becoming increasingly more prevalent as scientists learn about the chemistry and triggers that induce conformational changes in materials structures and devise ways to take advantage of and control them. Responsive Materials and Method offers state-of-the-art of the stimuli-responsive materials and their potential applications. This collection brings together novel methodologies and strategies adopted in the research and development of responsive materials and technology.

James Njuguna Functional and Physical Properties of Polymer Nanocomposites James Njuguna Functional and Physical Properties of Polymer Nanocomposites
:

James Njuguna Functional and Physical Properties of Polymer Nanocomposites


ПОДРОБНЕЕ...

8912.66 руб.

The first book to extensively cover nanoparticles, this addresses some of the key issues in nanocomposites. Polymer nanocomposites (polymers reinforced with nanoparticles), are of great interest due to their remarkable mechanical, thermal, chemical properties as well as optical, electronic, and magnetic applications Potential applications include automobile body parts, high-barrier packaging materials, flame-retardants, scratch-resistant composites, and biodegradable nanocomposites Combines basic theory as well as advanced and in-depth knowledge of these properties Broad audience includes researchers in Materials Science, Physics, Polymer Chemistry, and Engineering, and those in industry

Carlos Aleman Peptide Materials. From Nanostuctures to Applications Carlos Aleman Peptide Materials. From Nanostuctures to Applications
:

Carlos Aleman Peptide Materials. From Nanostuctures to Applications


ПОДРОБНЕЕ...

14642.61 руб.

Peptides are the building blocks of the natural world; with varied sequences and structures, they enrich materials producing more complex shapes, scaffolds and chemical properties with tailorable functionality. Essentially based on self-assembly and self-organization and mimicking the strategies that occur in Nature, peptide materials have been developed to accomplish certain functions such as the creation of specific secondary structures (a- or 310-helices, b-turns, b-sheets, coiled coils) or biocompatible surfaces with predetermined properties. They also play a key role in the generation of hybrid materials e.g. as peptide-inorganic biomineralized systems and peptide/polymer conjugates, producing smart materials for imaging, bioelectronics, biosensing and molecular recognition applications. Organized into four sections, the book covers the fundamentals of peptide materials, peptide nanostructures, peptide conjugates and hybrid nanomaterials, and applications with chapters including: Properties of peptide scaffolds in solution and on solid substrates Nanostructures, peptide assembly, and peptide nanostructure design Soft spherical structures obtained from amphiphilic peptides and peptide-polymer hybrids Functionalization of carbon nanotubes with peptides Adsorption of peptides on metal and oxide surfaces Peptide applications including tissue engineering, molecular switches, peptide drugs and drug delivery Peptide Materials: From Nanostructures to Applications gives a truly interdisciplinary review, and should appeal to graduate students and researchers in the fields of materials science, nanotechnology, biomedicine and engineering as well as researchers in biomaterials and bio-inspired smart materials.

Sergio Pizzini Physical Chemistry of Semiconductor Materials and Processes Sergio Pizzini Physical Chemistry of Semiconductor Materials and Processes
:

Sergio Pizzini Physical Chemistry of Semiconductor Materials and Processes


ПОДРОБНЕЕ...

5941.77 руб.

The development of solid state devices began a little more than a century ago, with the discovery of the electrical conductivity of ionic solids. Today, solid state technologies form the background of the society in which we live. The aim of this book is threefold: to present the background physical chemistry on which the technology of semiconductor devices is based; secondly, to describe specific issues such as the role of defects on the properties of solids, and the crucial influence of surface properties; and ultimately, to look at the physics and chemistry of semiconductor growth processes, both at the bulk and thin-film level, together with some issues relating to the properties of nano-devices. Divided into five chapters, it covers: Thermodynamics of solids, including phases and their properties and structural order Point defects in semiconductors Extended defects in semiconductors and their interactions with point defects and impurities Growth of semiconductor materials Physical chemistry of semiconductor materials processing With applications across all solid state technologies,the book is useful for advanced students and researchers in materials science, physics, chemistry, electrical and electronic engineering. It is also useful for those in the semiconductor industry.


Страницы:
Комментарии - Отзывы
Имя:
Текст сообщения (не больше 750 смволов, осталось 750)
 


Presents a fully interdisciplinary approach with a stronger emphasis on polymers and composites than traditional materials books Materials science and engineering is an interdisciplinary field involving the properties of matter and its applications to various areas of science and engineering. Polymer materials are often mixed with inorganic materials to enhance their mechanical, electrical, thermal, and physical properties. Materials: Introduction and Applications addresses a gap in the existing textbooks on materials science. This book focuses on three Units. The first, Foundations, includes basic materials topics from Intermolecular Forces and Thermodynamics and Phase Diagrams to Crystalline and Non-Crystalline Structures. The second Units, Materials, goes into the details of many materials including Metals, Ceramics, Organic Raw Materials, Polymers, Composites, Biomaterials, and Liquid Crystals and Smart Materials. The third and final unit details Behavior and Properties including Rheological, Mechanical, Thermophysical, Color and Optical, Electrical and Dielectric, Magnetic, Surface Behavior and Tribology, Materials, Environment and Sustainability, and Testing of Materials. Materials: Introduction and Applications features: Basic and advanced Materials concepts Interdisciplinary information that is otherwise scattered consolidated into one work Links to everyday life application like electronics, airplanes, and dental materials Certain topics to be discussed in this textbook are more advanced. These will be presented in shaded gray boxes providing a two-level approach. Depending on whether you are a student of Mechanical Engineering, Electrical Engineering, Engineering Technology, MSE, Chemistry, Physics, etc., you can decide for yourself whether a topic presented on a more advanced level is not important for you—or else essential for you given your professional profile Witold Brostow is Regents Professor of Materials Science and Engineering at the University of North Texas. He is President of the International Council on Materials Education and President of the Scientific Committee of the POLYCHAR World Forum on Advanced Material (42 member countries). He has three honorary doctorates and is a Member of the European Academy of Sciences, Member of the National Academy of Sciences of Mexico, Foreign Member of the National Academy of Engineering of Georgia in Tbilisi and Fellow of the Royal Society of Chemistry in London. His publications have been cited more than 7200 times. Haley Hagg Lobland is the Associate Director of LAPOM at the University of North Texas. She is a Member of the POLYCHAR Scientific Committeee. She has received awards for her research presented at conferences in: Buzios, Rio de Janeiro, Brazil; NIST, Frederick, Maryland; Rouen, France; and Lviv, Ukraine. She has lectured in a number of countries including Poland and Spain. Her publications include joint ones with colleagues in Egypt, Georgia, Germany, India, Israel, Mexico, Poland, Turkey and United Kingdom.
Продажа modelling and investigation of wetting properties of textile materials лучших цены всего мира


Посредством этого сайта магазина - каталога товаров Вы очень легко купите нужные Вам modelling and investigation of wetting properties of textile materials у одного из проверенных интернет-магазинов. Определитесь с вашими предпочтениями, с лучшей ценой продукта. Прочитав рекомендации по продаже modelling and investigation of wetting properties of textile materials легко выбрать производителя как превосходную и доступную фирму.
цена modelling and investigation of wetting properties of textile materials
стоимость modelling and investigation of wetting properties of textile materials
купить modelling and investigation of wetting properties of textile materials
продажа modelling and investigation of wetting properties of textile materials
заказать modelling and investigation of wetting properties of textile materials
покупкаmodelling and investigation of wetting properties of textile materials

Вы уходите? Котейко взгрустнул :(

cat

 

Если Мы помогли Вам найти нужный товар, оставьте,

пожалуйста, комментарий, лайк, пост о нас

в любой из этих соцсетях!

это даст Вам +100 к карме :)






Ваше мнение очень важно для нас!